EXPLORING THE OPPORTUNITIES

LOCAL CASE STUDY 1: 1960s retrofit

PROPERTY	Bungalow built in 1960, subsequently extended into the roof in 1997 and 2005. Two bedrooms, two/three reception, two bathrooms, kitchen, study. Block walls with cavity wall insulation retrofitted						
OCCUPIERS/USE	Retired couple						
OBJECTIVE	To reduce carbon emissions						
INSTALLATIONS	2020 Solar voltaic panels 3kW						
	2020 Air source heat pump 8.5 kW (ASHP) – Mitsubishi Ecodan						
	2021 EV smart charging point (integrated with solar)						
OTHER WORKS	Renovation and extension 2020: Partial installation of Under Floor Heating (UFH) Upgrading insulation in lofts Extension, built to current Building Regulation standards						

The air source heat pump replaced a 28kW gas boiler. There is no backup heating system although gas is retained for cooking (hob). The domestic hot water system (DHW) is pressurised and a new well-insulated 250L cylinder was fitted. The system circulation temperature is 50 °C.

The UFH is designed for this temperature. The existing radiators, designed for 75 °C, were checked for sufficient heat output at 50 °C. They proved to be large enough except in the two bathrooms. DHW operates between 45 and 50 °C, except that the solar panels heat the water to 60 °C if there is excess energy (not required by other house demand). So the mode of operation is:

WINTER: ASHP on 19 °C , room temperatures set back at night. Solar tops up DHW to 60 °C

SUMMER: ASHP off. Water heated by solar, topped up with ASHP occasionally

The ASHP unit sits in the garden near to the back door, from which pipes run underground and then up the wall to a loft which contains the DHW cylinder, buffer tank and controls.

Some statistics:

ANNUAL DEMAND	Heating and DHW			14.000 k	Wh	Other elec	trical	4.000	kWh		
ORIGINAL SYSTEM		incuting an		1,000 1		other cice	theat	.,			
759	boiler efficiency			18,700 k	18,700 kWh gas 4,000 kWh el			ectricity			
	unit cost April 2022 price cap			0.07 £/unit		0.29 £/unit					
	cost without standing charges			£1,309 p	£1,309 per year £1,		,160 per year f		£2,469 Total		
NEW SYSTEM											
3.	6 SCOP [*]	Heating an	d DHW		3,900 kWh electricity						
		Other elec	trical dema	ind	4,000 kWh electricity						
		Solar PV supplied				-1,700 kWh electricity					
	Т			Total	6,200 kWh per year			£1,798 Total			
	*Seasonal Coefficient of Performance			e			Saving	£671	per year		
CAPITAL COST - renewables (not EV charger)											
ASH	P £12,810	Solar	£8,715	Builder	£2,000	Grant	-£7,700	Net	£15,825		
CARBON EMISSION	S										
Ga	s 0.185	kge/kWh	Electricity	(notionall	y 100% re	enewable)	0.1 k	kge/kWh			
Orig	inal system	3.9	tonnes/yea	ar	Ne	ew system	0.62 t	/year	Saving	84%	

Visit the <u>Freshford & Limpley Stoke Home Energy Group</u> for more information on home energy. Contact us via <u>flhegroup@gmail.com</u>